Telephone Traffic Prediction Based on Modified Forecasting Model
نویسندگان
چکیده
منابع مشابه
Telephone Traffic Prediction Based on Modified Forecasting Model
This study presents a busy telephone traffic prediction model that combines wavelet transformation and least squares support vector machine. Firstly, decompose preprocessed telephone traffic data with Mallat algorithm and get low frequency component and high frequency component. Secondly, reconfigure each component and use LS_SVM model to predict each reconfigure one. Then the traffic can be ac...
متن کاملmortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولNetwork traffic prediction based on ARFIMA model
ARFIMA is a time series forecasting model, which is an improve d ARMA model, the ARFIMA model proposed in this article is d emonstrated and deduced in detail. combined with network traffi c of CERNET backbone and the ARFIMA model,the result sho ws that,compare to the ARMA model, the prediction efficiency a nd accuracy has increased significantly, and not susceptible to sa mpling.
متن کاملA GMDH-Based Traffic Flow Forecasting Model
Traffic flow forecasting, the core element of intelligent transportation system, plays an important role in traffic information services and traffic guidance. Since neural network prediction needs plenty of training samples, it cannot guarantee the real-timeness of traffic flow forecasting. In this paper, a GMDH network was constructed by self-organization, and the network was applied to traffi...
متن کاملForecasting of Busy Telephone Traffic Based on Wavelet Transform and ARIMA-LSSVM
In order to improve the prediction accuracy of busy telephone traffic which is influenced by multiple factors, this paper proposes a combined forecasting model which takes the influence of multiple factors into consideration and combines three models ——wavelet transform, autoregressive integrated moving average (ARIMA) model and least squares support vector machines (LSSVM) model, LSSVM is opti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Research Journal of Applied Sciences, Engineering and Technology
سال: 2013
ISSN: 2040-7459,2040-7467
DOI: 10.19026/rjaset.6.3617